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Abstract

We describe our progress in the development of a fourth-order, finite-volume dis-
cretization of a nonlinear, full-f gyrokinetic Vlasov-Poisson system in mapped co-
ordinates. The approach treats the configuration and velocity components of phase
space on an equal footing, using a semi-discretization with limited centered fluxes
combined with a fourth-order Runge Kutta integration. The algorithm has been
implemented in a new code named COGENT, which is built on the Chombo Adap-
tive Mesh Refinement library being developed by the SciDAC APDEC project. The
algorithm and code have been tested on geodesic acoustic mode problems in a stan-
dard equilibrium magnetic geometry by comparing damping rates and frequencies
with those predicted by theoretical dispersion analyses. Convergence tests are also
performed to verify the expected increase in accuracy as the phase space grid was
refined.

1 Introduction

The ability to computationally model the behavior of the edge plasma in fusion reactors
is a key component in the development of a whole device predictive simulation capability.
Among the features that distinguish the edge from the core is the development of a region
of steep gradients in the density and temperature profiles called the pedestal, the height
of which determines the quality of plasma confinement, and hence fusion gain. A kinetic
plasma model in needed in this region (Figure 1), because the radial width of the pedestal
observed in experiments is comparable to the radial width of individual particle orbits
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(leading to large distortions of the local distribution functions from a Maxwellian), while
the mean free path can be comparable to the scale length for temperature variations
along the magnetic field (violating the assumptions underlying a collisional fluid model).

Because of the large number of independent variables in a fully kinetic model, as
well as the fast time scale represented by the ion gyrofrequency, gyrokinetic models
(which average over fast gyro motion about field lines) have been developed to facilitate
numerical treatments. Continuum models consist of a Boltzmann equation for evolving
plasma species distribution functions in a particular coordinate system combined with
some variant of Maxwell’s equations. Gyrokinetic codes such as GENE[9, 10], GS2[6, 11]
and GYRO[1, 3, 2] have been successfully employed to model core plasmas for many
years. In addition to requiring simpler geometries, these codes exploit the fact that
in the core, distribution functions are typically small perturbations δf about a known
Maxwellian distribution f0, providing a simpler, and even sometimes linear, model. To
model the edge plasma all the way to the reactor walls, a method to solve nonlinear
gyrokinetic models for the entire distribution function (so-called full-f) in edge-relevant
geometries is needed.

In this paper, we summarize our progress to date in the development and applica-
tion of new algorithmic methodologies in the solution of a nonlinear, full-f , gyrokinetic
Vlasov-Poisson system. Beginning with a conservative formulation, the system is treated
as a nonlinear advection equation in a 4D (2 configuration space + 2 velocity space
coordinates) or 5D (3 configuration space + 2 velocity space coordinates) phase space.
A semi-discretization is employed based on a recently developed formalism [4] for the
creation of arbitrarily high-order finite-volume spatial discretizations in mapped coor-
dinates. In the present context, mapped coordinates enable the use of a multiblock,
locally rectangular computational domain, one of whose coordinates is aligned with mag-
netic flux surfaces. The use of a finite volume formulation naturally enables the discrete
enforcement of conservation, whereas a fourth-order discretization provides for more effi-
cient gridding of phase space and reduced numerical dissipation for long-time integration.
We demonstrate the performance of the algorithms on the simulation of geodesic acoustic
modes, which are eigenmodes of the gyrokinetic Vlasov-Poisson system.

2 The gyrokinetic Vlasov-Poisson system

We adopt the full f gyrokinetic model of [8]:

∂(B‖
∗
α
fα)

∂t
+ ∇R ·

(
ṘαB‖

∗
α
fα

)
+

∂

∂v‖

(
v̇‖α

B‖
∗
α
fα

)
= 0, (1)

where

Ṙα ≡ Ṙα(R, v‖, µ, t) ≡
v‖

B‖
∗
α

B∗
α +

ρL

ZαB‖
∗
α
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∗
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B∗
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Figure 1: DIII-D pedestal [13].

and

B∗
α ≡ B∗

α(R, v‖) ≡ B + ρL

mαv‖
Zα

∇R × b, (4)

B‖
∗
α
≡ B‖

∗
α
(R, v‖) ≡ b ·B∗

α, (5)

Gα ≡ Gα(R, µ, t) ≡ Zα∇RΦ +
µ

2
∇RB. (6)

The unknown quantity fα ≡ fα(Rα, v‖, µ, t) is the distribution function of the αth plasma
species in gyrocenter phase space coordinates (Rα, v‖, µ), whose equations of motion
are given by (2)-(6). To simplify the exposition here, we have neglected the drift due
to the equilibrium potential. We have also assumed a particular normalization that
nondimensionalizes all quantities. For example, the quantity ρL appearing in the last
term of (2) denotes the ion Larmor radius of the normalizing reference species relative
to the chosen normalizing length scale.

Gyrocenter coordinates play a key role in gyrokinetic models in two important ways.
First, they reduce what would otherwise be a six-dimensional phase space to five di-
mensions: Rα is the three-dimensional configuration space coordinate, v‖ is the velocity
space component along field lines, and the magnetic moment µ ≡ mαv2

⊥/2B is related
to the velocity v⊥ perpendicular to field lines. Through the use of asymptotic orderings,
gyrocenter coordinates are specifically constructed so as to make the distribution func-
tion f symmetric with respect to gyrophase. The latter component, which would have
been the third velocity component, can then be ignored. The magnetic moment µ, an
adiabatic invariant, is assumed to be constant in the development of gyrokinetic theories,
which is why no evolution equation appears for it. The second benefit of gyrocenter co-
ordinates is that the gyrofrequency is eliminated, which would otherwise represent a fast
time scale that would need to be resolved. Because gyrocenter coordinates are developed
as a Hamiltonian dynamical system, they satisfy the area preserving property

∇R ·
(
B‖

∗
α
Ṙα

)
+

∂

∂v‖

(
B‖

∗
α
v̇‖α

)
= 0, (7)
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where B‖
∗
α

is the Jacobian of the mapping between lab frame and gyrocenter coordinates.
As noted in [8], the gyrokinetic Vlasov equation can therefore be expressed in either
convective or conservative form. We choose the latter with the objective of achieving a
correspondingly conservative numerical discretization.

The potential Φ in (6) is evaluated by solving some form of Maxwell’s equations.
Here, we assume an electrostatic model obtained by the addition of Poisson’s equation
to the Vlasov system (1)-(6). The potential then depends only upon the charge density
of the distribution functions fα. A difficulty arises, however, from the fact that the fα

are only known in gyrocenter coordinates, whereas the Poisson equation is posed in the
lab frame. The velocity integral used to compute the ion charge density must therefore
be split into two pieces. In the long wavelength limit kρ � 1, where k is the magnetic
field wave number and ρ is the ion gyroradius, the gyrokinetic Poisson equation is

∇X ·

{[
λ2

DI + ρ2
L

∑
α

Zαn̄α

mαΩ2
α

(
I− bbT

)]
∇XΦ

}
= ne −

∑
α

Zαn̄α, (8)

where ∇X denotes the gradient with respect to the normalized lab frame coordinate and
λD is the normalized Debye length. The quantity

n̄α(x, t) ≡ 1

mα

∫
fα(x, v‖, µ, t)B∗

‖(x, v‖)dv‖dµ (9)

is the ion gyrocenter density, which is the gyrophase independent part of the integration
of the gyrocenter distribution function fα over velocity. The second term in the left-
hand side of (8) is the polarization density, which is the gyrophase-dependent part of
the velocity integration of fα. Since this piece depends upon the potential, we must
combine it with the usual Laplacian (the first term in (8)) in the construction of the
linear operator to be solved for Φ. Here, b denotes the unit vector in the direction of
the magnetic field, Zα is the charge state, mα is the mass and Ωα is the gyrofrequency.
We note that for typical tokamak parameters, λD � ρL, and hence the polarization
density term dominates. Because the electron gyroradius is small, a similiar splitting of
the electron density is omitted.

The gyrokinetic Vlasov-Poisson system is posed in a domain defined by the tokamak
magnetic geomtry, which is comprised of field lines lying on concentric flux surfaces.
Since there are large variations of plasma parameters along and across field lines, there
is strong motivation to discretize in coordinates where at least one of the coordinate
directions is defined by the flux surfaces. As depicted in Figure 2, a natural choice is
a mapped multiblock coordinate system, where the blocks correspond to the logically
distinct core, scrapeoff layer and private flux regions. Within each block, a rectangular
coordinate system can be employed, which facilitates efficient and accurate discretizations
and domain decompositions over processors.

We are therefore led to consider the discretization of the gyrokinetic Vlasov-Poisson
system (1)-(6) in a mapped coordinate system. Among our requirements is a conserva-
tive formulation, thereby discretely expressing the phase space conservation law (1). A
second requirement is high-order accuracy, enabling a more efficient deployment of de-
grees of freedom in discretizing the high-dimensional phase space. A high-order method
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Figure 2: Single null geometry (left) and multi-block, locally retangular computational
domain (right).

is also important for reducing numerical dissipation in long-time integrations. Additional
requirements include enforcement of positivity for the distribution functions fα and an
efficient solver for the gyrokinetic Poisson equation.

3 High-order, finite volume discretization in mapped

coordinates

Next, we summarize a general approach for the systematic development of high-order
finite volume discretizations in mapped coordinates. More complete details are contained
in [4].

Suppose that we have a smooth mapping X from the unit cube onto the spatial
domain Ω:

X = X(ξ), X : [0, 1]3 → Ω.

Given this mapping, the divergence of a vector field on Ω can be written in terms of
derivatives in [0, 1]3, which will serve as our computational domain. That is,

∇x · F =
1

J
∇ξ · (NT F ), (10)

J = det(∇ξX) , NT
p,q = det((∇ξX)(p|eq)), (11)
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where A(p|v) denotes the matrix obtained by replacing the pth row of the matrix A by
the vector v and eq is the unit vector in the q-th direction. The relationship (10) is an
easy consequence of the chain rule, equality of mixed partials, and Cramer’s rule.

In a finite volume approach, Ω is discretized as a union of control volumes. For
Cartesian grid finite volume methods, a control volume Vi takes the form

Vi =

[(
i− 1

2
u

)
h,

(
i +

1

2
u

)
h

]
, i ∈ Z3 , u = (1, 1, 1),

where h is the grid spacing. When using mapped coordinates, we define control volumes
in Ω as the images X(Vi) of the cubic control volumes Vi ⊂ [0, 1]3. Then, by changing
variables and applying the divergence theorem, we obtain the flux divergence integral
over a physical control volume X(Vi) by∫

X(Vi)

∇x · F dx =

∫
Vi

∇ξ · (NT F )dξ =
∑

±=+,−

3∑
d=1

±
∫

A±d

(NT F )ddAξ, (12)

where the A±
d are upper and lower faces of cell Vi in the d-th direction. As described in

[4], the integrals on the cell faces A±
d can be approximated using the following formula for

the average of a product in terms of fourth-order accurate face averages of each factor:

〈fg〉i+ 1
2
ed = 〈f〉i+ 1

2
ed 〈g〉i+ 1

2
ed +

h2

12
G⊥,d

0

(
〈f〉i+ 1

2
ed

)
·G⊥,d

0

(
〈g〉i+ 1

2
ed

)
+ O(h4). (13)

Here, G⊥,d
0 is the second-order accurate central difference approximation to the compo-

nent of the gradient operator orthogonal to the d-th direction: G⊥,d
0 ≈ ∇ξ − ed ∂

∂ξd
, and

the operator 〈·〉i+ 1
2
ed denotes a fourth-order accurate average over the face centered at

i + 1
2
ed:

〈q〉i+ 1
2
ed =

1

h2

∫
Ad

q(ξ)dAξ + O(h4).

Alternative expressions to (13) are obtained by replacing the averages 〈f〉i+ 1
2
ed and/or

〈g〉i+ 1
2
ed used in the transverse gradients G⊥,d

0 by the corresponding face-centered point-

wise values fi+ 1
2
ed and/or gi+ 1

2
ed , respectively.

We therefore have∫
X(Vi)

∇x · F dx = h2

3∑
d=1

∑
±=+,−

±F d
i± 1

2
ed + O(h4), (14)

where

F d
i± 1

2
ed ≡

3∑
s=1

〈N s
d〉i+ 1

2
ed 〈F s〉i+ 1

2
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12
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·
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0 (〈F s〉i+ 1
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ed)

)
, (15)
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F s is the s-th component of F and N s
d is the (s, d)-th element of the matrix N . In [4], it

is demonstrated that the computation of the face averages 〈N s
d〉i+ 1

2
ed can be reduced to

integrals over cell edges. Moreover, assuming that the edge integrals are performed with
the same quadratures wherever they appear,

3∑
d=1

∑
±=+,−

±
∫

A±d

N s
ddAξ = 0, (16)

which guarantees the freestream property that the divergence of a constant vector field
computed by (12) is identically zero.

4 Newton-Krylov solution of the gyrokinetic poisson

equation with adiabatic electrons

Although the model (1)-(6) can describe the evolution of electrons just as well as ions,
it is often of interest to use a simpler electron model. This is especially the case when
performing an explicit time integration, whose time step size would otherwise suffer from
the stability restriction resulting from the small electron mass. One such model is the
Boltzmann relation

ne =
〈
∑

i Zin̄i〉j
〈exp(Φ/Te)〉j

exp(Φ/Te), (17)

where 〈u〉j ≡
∑

k wj,ku(rj, θk) denotes the average of u over the j-th flux surface. Boltz-
mann relations such as (17) are obtained by integrating the component of the momentum
equation in the magnetic field direction of a fluid model neglecting inertial terms; the
resulting constant of integration appears as a prefactor that can be chosen to impose
an addition constraint. In (17), the prefactor is chosen to maintain charge neutrality on
(closed) flux surfaces, which is justified by the fast motion of electrons along field lines.

Because the use of (17) in (8) results in a nonlinear equation, we use a Newton iteration
to solve for Φ. In each Newton iteration, a linear solve is performed whose coefficient
matrix is the Jacobain J = J1 +J2, where J1 is the gyrokinetic Poisson operator and the
contribution resulting from (17) is

J2 ≡ diagj

[
〈
∑

i Zin̄i〉j
Te

Dj(Φ)(I − eT wjDj(Φ))

]
, (18)

where

Dj(Φ) ≡ diagk(exp(Φj,k)Te)

〈exp(Φ/Te)〉j
, (19)

e ≡ (1, 1, ..., 1), (20)

w ≡ (wj,1, wj,2, ..., wj,N). (21)

For domains whose radial width spans many gyroradii, the Jacobian term J2 dominates
J1. However, J2 is singular, with a null space comprised of vectors corresponing to
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functions that are constant on flux surfaces. This implies that the use of a Krylov
method to solve the Jacobian system must be modified to avoid the near null space. In
the implementation described in the next section, we employ a Bi-Conjugate Gradient
Stabilized (BiCGStab) iteration with a two-step preconditioner. The first step projects
the current residual onto flux surface averages and applies a tridiagonal solve to obtain
a correction that is a function of radius only. The second step of the preconditioner
handles the complementary piece of the residual, using a few iterations of a multigrid
preconditioned conjugate gradient iteration.

5 Implementation

The algorithms summarized above provide the foundation of a new code named COGENT
(COntinuum Gyrokinetic Edge New Technology) for solving the gyrokinetic Vlasov-
Poisson system (1)-(6) and (8). The fourth-order, finite-volume, mapped-grid spatial
discretization described in Section 3 is combined with a fourth-order Runge Kutta (RK4)
time integration. In each function evaluation, the gyrokinetic Poisson equation is solved
using the RK4-predicted distribution functions, yielding the electric field needed to com-
pute the phase space velocities (2)-(6).

COGENT is built upon the Chombo library [5] under development by the SciDAC
APDEC project to facilitate the creation of structured adaptive mesh refinement (AMR)
applications. Although COGENT does not currently utilize Chombo’s AMR capabili-
ties, a future development path is nevertheless provided. Chombo provides support for
the mapped grid formalism described in Section 3. This includes the construction of
discrete metric factors from a user-specified mapping and the computation of fourth-
order face-averaged fluxes via (15). COGENT also utilizes Chombo’s data containers for
mesh-dependent quantities distributed over processors. Such quantities are functions of
configuration space (e.g., potential) or phase space (e.g. distribution functions), each of
which can be domain decomposed independently. This implies the need for injection and
projection operators between configuration/velocity and phase space, which have also
been developed in COGENT.

6 Numerical example: Geodesic acoustic modes

As a test of the accuracy of our discretization and code, we consider the calculation of
geodesic acoustic modes (GAMs), which are eigenmodes of the gyrokinetic Vlasov-Poisson
system [14]. More specifically, a GAM is an ion acoustic wave driven by components
of the E × B force related to the geodesic curvature of field lines on flux surfaces. The
radial component of E induces a perpendicular flow which, to maintain continuity, results
in a density perturbation. The density perturbation generates a current that in turn
transports charge across the flux surfaces acting to reverse E. The interaction of these
processes results in a damped wave. Figure 3 contains plots of ion density (top row)
and potential (bottom row) computed by COGENT in the vicinity of an equilibrium
flux surface [12] for a sample GAM problem. The times shown are before (left), during
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(middle) and after (right) one of the direction reversals of the primarily radial electric
field. Figure 4 shows the damped oscillation of the potential at a probe located at the
point indicated by the “X” in the bottom right panel of Figure 3.

In the case of a circular geometry, the GAM frequency and damping rate can be
predicted by a dispersion analysis of a linear gyrokinetic equation. In [7], frequencies and
damping rates are obtained as functions of the ion thermal velocity vti, major radius R,
ratio of electron to ion temperature τ = Te/Ti, and field line safety factor q. The safety
factor q is the number of times a field line winds around the toroidal direction of the
torus for each time it winds around the poloidal direction. It thus defines the pitch of
a field line, which is related to its geodesic curvature. For large q, the frequency ω and
damping rate γ are obtained asymptotically as [7]

ω2 =

(
7

4
+ τ

)
v2

ti

R2

[
1 +

46 + 32τ + 8τ 2

(7 + 4τ 2)q2

]
, (22)

γ = −i
π1/2

2

vti

R

(Rω/vti)
6

(7/4 + τ)
q5 exp

[
−

(
qRω

vti

)2
]

. (23)

For small q, frequencies and damping rates cannot be expressed in such an analytic form
and must instead be obtained by solving for the roots of a nonlinear system of equations.
The system includes the resonant responses corresponding to an arbitrary number of
toroidal modes.

In Figure 5, the damping rates and frequencies predicted by COGENT with τ = 0.1
are plotted against theory predictions of [7] for τ = 0. As indicated by the dashed
curves, it is necessary to include at least 4 toroidal modes in the dispersion analysis
theory prediction to converge the damping rate.

To investigate the accuracy of the GAM results, we performed a convergence study
using a sequence of refined grids and Richardson extrapolation. Beginning with an 8 ×
32× 32× 8 (r × θ × v‖ × µ) grid, we generated 3 more grids by refining all phase space
dimensions by a factor of two. We then integrated the GK Vlasov-Poisson system to a
fixed time on each grid and computed the differences dN ≡ ||nN − nN−1||, where nN is
the ion density on the N th refinement level, 1 ≤ N ≤ 4, and the norm is the L1, L2 or
Max norm. The convergence rates and errors for N = 3 and 4 are then estimated by
ρN ≡ log(dN/dN−1) and εN ≡ log(dN)/(1 + 2ρN ), respectively. The results are shown in
Table 1, where the fourth-order convergence of the error is observed.

In Figure 6, the differences eN ≡ ||nN−n4|| are plotted for 1 ≤ N ≤ 3, approximating
the error in the solutions on the first three refined grids by assuming that the solution
on the fourth refined grid is exact. The black curve (only whose slope and not vertical
position is relevant) indicates fourth-order convergence.

7 Summary

A gyrokinetic code for the predictive simulation the plasma edge of a fusion reactor
involves multiple components, including the accurate and efficient advection of full dis-
tribution functions in 4D and 5D phase space. We have described here our progress
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X

Figure 3: Ion density (top row) and potential (bottom row) in the vicinity of an equilib-
rium flux surface. The columns correspond to times prior to, during and after a reversal
of the electric field.

10



0 10 20 30
Time

-0.2

0

0.2

0.4

0.6

Po
te

nt
ia

l

Figure 4: Potential at probe.

Figure 5: GAM damping rate (left) and frequency (right) as a function of safety factor.
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Grid Grid (r × θ × v‖ × µ) Estimated Richardson
refinement density error extrapolated

level N conv. rate ρN density error εN

1 8× 32× 32× 8
2 16× 64× 64× 16
3 32× 128× 128× 32 3.8 (L1) 3.37× 10−7 (L1)

3.8 (L2) 6.03× 10−7 (L2)
4.1 (Max) 1.95× 10−4 (Max)

4 64× 256× 256× 64 4.2 (L1) 1.40× 10−8 (L1)
4.1 (L2) 2.95× 10−7 (L2)
3.6 (Max) 1.69× 10−5 (Max)

Table 1: Estimated convergence rates and extrapolated errors for a sequence of refined
grids.

Figure 6: Error as a function of refinement level, assuming the solution on the finest grid
is exact. The black curve indicates a fourth-order convergence rate.
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in the development and implementation of a particular discretization of a nonlinear,
full-f gyrokinetic Vlasov-Poisson system in mapped coordinates. The approach treats
the configuration and velocity components of phase space on an equal footing, using a
fourth-order, finite-volume, mapped grid spatial discretization combined with a fourth-
order Runge Kutta time integration. The algorithm has been implemented in a new
code named COGENT, which is built on the Chombo Adaptive Mesh Refinement library
being developed by the SciDAC APDEC project. In COGENT, the phase space, con-
figuration space and velocity space grids may be decomposed independently, allowing
degrees of freedom to be deployed most efficiently. The algorithm and code have been
tested on geodesic acoustic mode problems in a standard equilibrium magnetic geometry
by comparing damping rates and frequencies with those predicted by theoretical disper-
sion analyses. Convergence tests were also performed to verify the expected increase in
accuracy as the phase space grid was refined.
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